The Importance of Air Flow Patterns in Cleanroom Design

Kjeld Lund May 9, 2025
Pharmaceutical Manufacturing in Cleanroom

Introduction


Cleanrooms are controlled environments designed to minimize contamination risks and maintain the highest standards of cleanliness. Industries such as pharmaceuticals, biotechnology, aerospace, semiconductor manufacturing, and medical devices rely on these spaces to ensure the safety, efficiency, and quality of their processes and products. One of the most critical aspects of cleanroom design is the management of airflow patterns.


Proper airflow patterns ensure that particulate contamination is minimized, clean air is evenly distributed, and the cleanroom environment remains effective in preventing contamination.


In this article, we will explore why air flow patterns are so important in cleanroom design, how they influence contamination control, and the strategies used to optimize air flow in cleanrooms to meet stringent industry standards.


Understanding Cleanroom Air Flow


Air flow patterns in a cleanroom refer to how air circulates throughout the space, from its entry into the room to its exit. The flow of air directly impacts how contaminants—such as particles, dust, or microorganisms—are carried and removed from the environment. Airflow also affects the room's pressure, temperature, humidity, and, ultimately, its classification according to standards like ISO 14644-1.


The main goal of airflow design in a cleanroom is to ensure that particles generated within the cleanroom, whether from equipment, materials, or personnel, are swiftly removed without contaminating the workspace or settling onto sensitive products. Proper air flow patterns achieve this by directing contaminated air out of the cleanroom, replacing it with clean, filtered air.


The Role of Airflow in Cleanroom Contamination Control


Contamination control is one of the core functions of cleanroom airflow design. In cleanrooms, contamination can originate from several sources:


  • Personnel: Workers in cleanrooms, even with protective gowns and gear, can shed skin cells, hair, and particles. Proper airflow ensures that these particles are removed from the workspace before they have a chance to settle on surfaces or products.
  • Equipment and Materials: Cleanroom equipment, machinery, and materials may also generate particulate contamination. Efficient airflow ensures that particles generated by these sources are quickly carried away from sensitive areas.
  • External Contamination: Airflow patterns can also help control the ingress of contaminants from external sources, such as ventilation systems or the air outside the cleanroom. Ensuring a proper differential pressure between the cleanroom and adjacent areas reduces the risk of contaminants entering the cleanroom from uncontrolled spaces.


By designing air flow to remove particles from critical areas efficiently, cleanroom designers help ensure the integrity and sterility of the products being manufactured or processed.


Types of Airflow Patterns in Cleanroom Design


There are several types of airflow patterns commonly used in cleanroom design, each of which plays a different role in particle control and cleanroom performance:


1. Laminar Flow


Laminar flow is one of the most commonly used airflow patterns in cleanrooms, particularly in environments where the risk of contamination is high, such as pharmaceutical manufacturing or semiconductor fabrication.


In laminar flow, air moves in parallel layers with minimal disruption between them. This flow pattern is characterized by smooth, unidirectional movement, which helps sweep contaminants away from sensitive areas. Laminar flow can be horizontal or vertical, depending on the cleanroom's design.


  • Vertical Laminar Flow: In vertical laminar flow, air is drawn from the ceiling and moves downward toward the floor. This type of flow is most common in cleanrooms where sensitive products or processes are located near the floor, such as in assembly areas or packaging areas. The air is typically filtered through HEPA (High-Efficiency Particulate Air) or ULPA (Ultra-Low Penetration Air) filters before being introduced into the cleanroom to ensure the highest possible level of air purity.
  • Horizontal Laminar Flow: In horizontal laminar flow, air is drawn into the cleanroom from one side and moves horizontally across the room, typically towards an exhaust vent or filtration system. This design is often used in areas where large equipment or workbenches are placed along one side of the room.


Advantages of Laminar Flow:

  • Effective in sweeping airborne particles away from critical areas.
  • Minimizes turbulence that could disturb the particulate settling in sensitive areas.
  • Provides consistent air distribution across the cleanroom, ensuring all areas receive a uniform level of air cleanliness.

Considerations:

  • It requires precise control over airflow to ensure that particles are continually removed.
  • Potential inefficiency in rooms with a large number of obstructions or complex layouts, as airflow might not reach all areas efficiently.


2. Turbulent Flow


Turbulent flow, on the other hand, is less controlled than laminar flow and results in chaotic air movement. This flow pattern is typically found in environments where contamination is less critical, such as in low-ISO cleanrooms (ISO 7 and 8), or in support areas like storage rooms.


While turbulent flow is less efficient at removing particles from critical areas, it can still play an important role in larger, more open spaces or less-sensitive parts of the cleanroom. The air will still eventually be filtered, but the air moves more erratically compared to laminar flow.


Advantages of Turbulent Flow:

  • Easier to implement in larger or less critical areas of a cleanroom.
  • Can be used in non-production areas where contamination control requirements are less stringent.

Considerations:

  • Less effective at maintaining uniform cleanliness in areas where contamination is critical.
  • Can lead to stagnant air pockets, where particles can accumulate.


3. Unidirectional Flow


Unidirectional flow, often used in combination with laminar flow, refers to a specific type of air circulation where the airflow is directed in one consistent direction. Unidirectional airflow is designed to ensure that contaminants are constantly being directed out of the cleanroom, and it is typically used in spaces like clean benches, isolators, or controlled workstations.


This airflow system combines laminar flow principles with the continuous movement of air to create a highly controlled, sterile environment in areas where very high standards are required.


Advantages of Unidirectional Flow:

  • Perfect for maintaining a highly sterile environment for critical processes such as drug compounding or electronics manufacturing.
  • Reduces the potential for cross-contamination between workers or workstations.

Considerations:

  • Requires careful design and placement of air supply and exhaust systems.
  • Generally not suitable for large-scale production areas due to its focused nature.


The Importance of Airflow Patterns for ISO Cleanroom Classes


Cleanroom standards, such as those set by the International Organization for Standardization (ISO 14644-1), define the cleanliness of a room based on the number of particles per cubic meter at specific sizes. As the cleanroom class decreases (i.e., from ISO 5 to ISO 8), the acceptable particle count increases, which directly impacts airflow requirements.


  • ISO Class 1 to Class 5: These classes require highly efficient airflow systems, including laminar flow and unidirectional airflow. The air must be filtered multiple times (often through HEPA or ULPA filters) to remove particles, and the air must be delivered in a controlled, uniform manner to avoid turbulence and particle deposition. Cleanrooms of these classes are typically used for highly sensitive processes like semiconductor manufacturing, pharmaceuticals, and biotechnology.
  • ISO Class 6 to Class 8: As the cleanliness standards become less strict, airflow systems can become less stringent, but they still need to ensure that contaminants are removed from critical areas. These classes are often found in industries like food packaging or less-sensitive assembly lines, where a less precise level of airflow is acceptable.


Key Considerations for Designing Airflow Patterns


When designing airflow patterns in a cleanroom, several factors need to be taken into account:


  1. Cleanroom Size and Layout: The size and layout of the cleanroom will influence how air flows through the space. For large rooms, multiple air handling units may be needed, and careful planning is required to ensure that airflow is evenly distributed across all critical areas.
  2. Personnel and Equipment Placement: The location of personnel and equipment will also influence air flow patterns. Workstations, machinery, and equipment should be positioned in such a way that they do not disrupt airflow or create turbulence that could lead to contamination.
  3. Airflow Velocity: The velocity of the airflow must be carefully regulated to avoid disturbing settled particles or causing turbulence that could affect contamination control. Too high a velocity can cause particulate movement, while too low a velocity may allow particles to settle back onto surfaces.
  4. Pressure Differentials: To ensure that contaminants do not enter the cleanroom, pressure differentials between the cleanroom and surrounding areas must be maintained. Positive pressure is typically used in cleanrooms to prevent the ingress of contaminated air from adjacent spaces.
  5. Filtration Systems: Filtration is a critical component of cleanroom airflow. Air entering and exiting the cleanroom must pass through high-efficiency filters, such as HEPA or ULPA, to ensure that airborne particles are removed before the air enters the cleanroom or exits to the environment.


Conclusion


Airflow patterns are a fundamental aspect of cleanroom design and performance. By ensuring that air circulates effectively, cleanrooms can maintain their cleanliness standards, protect product integrity, and prevent contamination from personnel, equipment, and external sources.


Whether utilizing laminar flow, turbulent flow, or unidirectional flow, the proper design of airflow systems is essential for meeting ISO classification requirements and creating a safe, sterile environment for sensitive processes and products. Cleanroom designers must carefully consider factors such as room layout, airflow velocity, personnel positioning, and filtration systems to achieve the best possible airflow design for their specific application.


Read more: All About Cleanrooms - The ultimate Guide


Solar Panel Manufacturing in Cleanroom
By Kjeld Lund August 22, 2025 August 22, 2025
Introduction Solar panel manufacturing is a highly sophisticated process that requires a combination of advanced materials, precision engineering, and a contamination-free environment. As the demand for renewable energy sources grows, the solar energy industry has experienced rapid advancements in both technology and production methods. At the heart of these developments is the cleanroom – a controlled environment essential for ensuring the highest level of quality and efficiency in the production of solar panels. Cleanrooms are designed to maintain a controlled environment with minimal levels of dust, airborne particles, and other contaminants that could affect the delicate manufacturing process. In solar panel production, where minute defects can compromise efficiency and performance, the role of cleanrooms becomes paramount. This article explores the critical role of cleanrooms in solar panel manufacturing, the processes that require such environments, and the importance of contamination control in ensuring high-quality, reliable solar panels. Understanding Cleanrooms and Their Role Cleanrooms are environments that have controlled levels of airborne particles, temperature, humidity, and pressure. They are classified based on the concentration of particles of different sizes in the air, as specified by standards such as the ISO 14644 series. In the context of solar panel manufacturing, cleanrooms are required for various processes to ensure that even microscopic particles do not interfere with the production of highly efficient solar cells. The primary function of cleanrooms in solar panel manufacturing is to create an environment that prevents contaminants such as dust, chemicals, and even microbial particles from damaging the components and materials used to make solar panels. The introduction of foreign particles during production can lead to defects in the solar cells, reducing their efficiency, lifespan, and overall performance. The Solar Panel Manufacturing Process and Cleanroom Requirements The manufacturing process of solar panels is complex, involving multiple stages that require the use of highly refined materials and the integration of delicate components. These stages include the preparation of raw materials, the creation of solar cells, and the assembly of solar panels. Let’s explore these processes and examine why cleanroom environments are crucial at each step. 1. Silicon Wafer Production The foundation of most solar panels is the silicon wafer. Silicon is the most widely used material for creating solar cells, and its purity is critical to ensuring the efficiency of the solar panel. Silicon wafers are thin slices of silicon crystal, and any contaminants introduced during the slicing process can affect the quality of the wafer. Cleanrooms are vital in this early stage of solar panel manufacturing, as even tiny particles of dust or contaminants can alter the structure of the silicon, leading to defects. Silicon wafers must be cut, polished, and chemically treated in a cleanroom environment to remove surface contaminants and prepare them for the next stage of manufacturing. In these controlled environments, the silicon wafer is treated with chemicals and heated to high temperatures in vacuum chambers, processes that require meticulous contamination control to prevent particle buildup. 2. Solar Cell Production Once the silicon wafers are prepared, they undergo a series of processes to create the solar cells. This includes doping, where materials such as phosphorous or boron are introduced to the silicon to create the p-n junction, which is essential for the photovoltaic effect that generates electricity when exposed to sunlight. The doping process must be performed under stringent conditions, as even the slightest impurity can interfere with the efficiency of the solar cell. The introduction of doping materials in cleanrooms ensures that the process is controlled and free from contaminants that could affect the material properties of the silicon. In addition to doping, solar cells undergo a process called passivation, where a thin layer is applied to the surface of the cell to reduce recombination losses and improve efficiency. Again, these processes require extremely clean environments to ensure that the surface of the cell remains free from dust and particles that could disrupt the passivation layer or the overall structure of the solar cell. 3. Cell Testing and Sorting Once solar cells are manufactured, they are tested for efficiency, performance, and reliability. Solar cells are typically tested under simulated sunlight to evaluate how much energy they can generate. Cleanrooms play a crucial role during this testing phase by ensuring that the cells are not exposed to dust or particles that could interfere with the test results. During testing, solar cells must be handled with care to avoid contamination or physical damage. Cleanrooms provide the necessary environment to perform testing in a controlled space, where temperature, humidity, and cleanliness can be maintained to guarantee consistent results. The sorting of cells based on their efficiency is also performed in cleanrooms to ensure that only the highest-performing cells are used in the final assembly of the solar panels. 4. Panel Assembly The final stage in solar panel manufacturing is the assembly of individual solar cells into complete modules or panels. This process involves wiring the solar cells together and encapsulating them in protective layers. Cleanrooms are particularly important in this stage, as the cells must be carefully aligned and soldered to ensure proper electrical conductivity. The encapsulation process, which involves placing the cells in layers of protective materials like glass, plastic, and EVA (Ethylene Vinyl Acetate), also requires a cleanroom environment. Any dust or debris that settles on the cells during this process can reduce the efficiency of the panel or cause long-term degradation. Cleanroom environments prevent such contamination, allowing for the precise assembly of high-quality solar panels that can withstand environmental conditions over time. Importance of Contamination Control in Solar Panel Manufacturing Contamination control is the backbone of cleanroom environments and is crucial in ensuring that solar panels meet the highest quality standards. In solar panel manufacturing, contamination can take many forms, including dust, airborne particles, chemicals, and even human particles such as skin cells or hair. These contaminants can interfere with the delicate materials used in the production of solar cells and panels. Here are the key reasons why contamination control is essential in solar panel manufacturing: 1. Improved Efficiency Solar panels are designed to convert as much sunlight as possible into electricity. Contaminants, even at microscopic levels, can impede the electrical performance of the solar cells, leading to decreased efficiency. For instance, dust particles or impurities can cause hotspots within the cells or interfere with the electrical connections, reducing the panel’s overall ability to generate power. By maintaining strict contamination control in cleanrooms, manufacturers can ensure that solar panels are as efficient as possible, with minimal defects and maximum performance. 2. Increased Lifespan Solar panels are designed to last for decades, but contamination during the manufacturing process can lead to long-term degradation. For example, contamination on the surface of solar cells can create weak spots that are more susceptible to damage from UV radiation or environmental factors. By using cleanroom environments to eliminate contaminants during production, manufacturers can increase the longevity of the solar panels, ensuring that they continue to perform well over time. 3. Consistency and Reliability In industries like solar energy, where performance and reliability are critical, even small variations in manufacturing quality can have significant impacts. Contamination can lead to inconsistencies in the manufacturing process, resulting in panels that perform differently from one another. By maintaining a cleanroom environment, manufacturers can ensure that each solar panel is produced to the same high standard, providing consistent and reliable performance across all units. 4. Meeting Regulatory Standards Solar panel manufacturers are often required to meet specific regulatory standards for quality, safety, and environmental impact. These standards ensure that the solar panels are safe to use and will perform as expected throughout their lifespan. Cleanrooms are essential for meeting these standards, as they provide the necessary environment for producing high-quality panels that comply with regulatory requirements. Energy Efficiency and Sustainability in Cleanroom Design In the context of solar panel manufacturing, energy efficiency is a crucial consideration. While cleanrooms are necessary for ensuring product quality, they are also energy-intensive environments due to the HVAC systems required to maintain strict environmental conditions. Solar panel manufacturers are increasingly adopting energy-efficient cleanroom designs that minimize energy consumption while maintaining the required standards for cleanliness and contamination control. Energy-saving technologies such as variable air volume (VAV) systems, heat recovery systems, and high-efficiency air filtration systems are being implemented in cleanroom designs to reduce their environmental impact. These innovations not only lower operating costs but also align with the sustainability goals of the solar energy industry, making cleanroom manufacturing more energy-efficient and environmentally friendly. Conclusion Cleanrooms are indispensable in the manufacturing of solar panels, where even the smallest contaminant can compromise the efficiency, performance, and reliability of the final product. From the production of silicon wafers to the final assembly of solar panels, cleanrooms ensure that the manufacturing process remains free from dust, particles, and other contaminants that could degrade the quality of the solar cells. The controlled environments provided by cleanrooms help manufacturers produce high-efficiency, long-lasting, and reliable solar panels that meet regulatory standards and contribute to the growth of the renewable energy industry. As the demand for solar energy continues to rise, cleanroom technology will play an even more significant role in driving innovation and ensuring the production of high-quality solar panels. Read more: All About Cleanrooms - The ultimate Guide
Biotechnology Cleanroom Research Lab
By Kjeld Lund August 1, 2025 August 1, 2025
Introduction Cleanrooms, crucial environments in industries like pharmaceuticals, biotechnology, semiconductor manufacturing, aerospace, and healthcare, are designed to minimize contamination and maintain stringent environmental controls. These spaces require high levels of energy input to maintain optimal conditions, such as precise temperature, humidity, air filtration, and pressure regulation. Cleanroom systems typically operate continuously, making them some of the most energy-intensive spaces within manufacturing and research facilities. While cleanrooms are designed with safety, product integrity, and contamination control in mind, it is equally important for businesses to consider energy efficiency. With rising energy costs, growing environmental concerns, and increasing regulatory pressure, cleanroom operators must find ways to minimize energy consumption without compromising performance, cleanliness, or safety. This article explores key strategies and technologies for improving energy efficiency in cleanroom operations, focusing on sustainable approaches that can reduce operating costs, enhance environmental impact, and improve overall system performance. The Energy Demands of Cleanrooms Before diving into strategies for energy efficiency, it's important to understand why cleanrooms are so energy-demanding. Cleanrooms typically require: HVAC Systems : Cleanrooms rely on high-efficiency heating, ventilation, and air conditioning (HVAC) systems to maintain precise temperature, humidity, and air quality standards. HVAC systems must continuously filter and circulate large volumes of air, ensuring that the air is free from particles, microorganisms, and chemical contaminants. This high airflow and filtration requirement consumes a significant amount of energy. Air Filtration : Cleanrooms use specialized filtration systems, such as HEPA (High-Efficiency Particulate Air) or ULPA (Ultra-Low Penetration Air) filters, to remove airborne particles. These filters need to be replaced or cleaned regularly, and the ventilation systems must work harder as filters become clogged, leading to higher energy usage. Pressure Control : Cleanrooms must maintain precise pressure differentials to prevent contaminants from entering the space from adjacent areas. This requires continuous control and monitoring of airflow, which is energy-intensive. Lighting and Equipment : Cleanrooms also use specialized lighting and equipment that are designed for cleanroom environments. These may include bright, flicker-free LED lights, which are energy-efficient but still add to the overall energy load, especially when the cleanroom is operational 24/7. Why Energy Efficiency Matters in Cleanrooms Energy efficiency in cleanrooms is vital for several reasons: Cost Savings : Given the constant energy demand for HVAC systems, filtration, lighting, and equipment, energy consumption in cleanrooms can account for a significant portion of a facility's total energy costs. Implementing energy-saving strategies can reduce electricity and heating/cooling expenses over time, helping businesses control costs. Environmental Responsibility : As businesses become more aware of their environmental impact, reducing energy consumption helps minimize carbon footprints. Many industries, particularly those in high-regulation sectors, are facing increasing pressure to demonstrate environmental stewardship and sustainability. Compliance with Regulations : Government regulations and industry standards for energy use are tightening. Cleanroom operators need to comply with these standards to avoid penalties or fines. Additionally, energy-efficient practices may also be mandated in certain sectors to align with sustainability goals and reduce overall environmental impact. Operational Performance : Inefficient energy systems can lead to unnecessary wear and tear on equipment, increased maintenance costs, and, in some cases, disruptions in cleanroom operations. Efficient systems are often more reliable and cost-effective to maintain. Strategies for Improving Energy Efficiency in Cleanrooms There are several strategies that cleanroom operators can implement to improve energy efficiency without compromising the integrity of the cleanroom environment. These strategies can be broadly categorized into operational, technological, and design-based approaches. 1. Optimizing HVAC Systems Given that HVAC systems are the most energy-intensive component of a cleanroom, improving the efficiency of these systems should be a primary focus. Several techniques can enhance HVAC energy efficiency: Variable Air Volume (VAV) Systems : A variable air volume system adjusts the amount of airflow depending on the cleanroom's needs. By reducing airflow when less filtration is required (e.g., during periods of low activity), VAV systems help lower energy consumption. The system only increases airflow when high air exchange rates are necessary, such as during production or cleaning cycles. Demand-Controlled Ventilation (DCV) : DCV adjusts ventilation rates based on real-time occupancy or contaminant levels. For instance, during periods when fewer people are in the cleanroom, or when the contaminants are minimal, the system can reduce airflow, saving energy. Sensors can be used to monitor CO2 levels, air quality, and particle counts to control the ventilation rates dynamically. Heat Recovery Ventilation (HRV) : Heat recovery ventilation systems capture energy from the exhaust air and use it to precondition incoming air. This can significantly reduce the need for heating and cooling energy, as the HRV system recycles energy that would otherwise be wasted. In cold climates, this can reduce heating costs, while in warm climates, it reduces the cooling load. Airflow Optimization : Optimizing airflow through careful layout and design of air distribution systems can improve HVAC efficiency. Strategies include eliminating unnecessary ducts, reducing air leakage, and placing air inlets and outlets in optimal locations for effective air distribution. Proper sealing and insulation also ensure that air does not escape through cracks or gaps in the cleanroom envelope. 2. Energy-Efficient Filtration Systems The filtration system is another significant energy consumer in cleanrooms. To improve energy efficiency, consider the following options: Filter Efficiency and Maintenance : The efficiency of filters plays a major role in how hard HVAC systems have to work. Choosing the right filter for the cleanroom’s needs—whether HEPA or ULPA—ensures optimal performance. Furthermore, regular maintenance, such as cleaning or replacing filters, reduces strain on HVAC systems and ensures that air filtration is both effective and energy-efficient. Low-Resistance Filters : Newer technologies have introduced low-resistance filters that require less power to move air through them. These filters maintain the high filtration standards necessary for cleanrooms but reduce the pressure drop across the filter, thereby reducing energy use. Modular Filter Banks : Modular filter banks allow for the addition or removal of filters as needed. This helps maintain airflow without overburdening the system. If the cleanroom’s requirements change (e.g., higher particle filtration or changing regulatory standards), the system can be adjusted without significantly impacting energy use. 3. Energy-Efficient Lighting Lighting is an important component of cleanroom energy use. Cleanrooms often require bright, uniform lighting to ensure optimal working conditions. However, this can result in high energy consumption. To optimize lighting: LED Lighting : LED lighting is much more energy-efficient than traditional fluorescent lighting. LED bulbs consume less energy, last longer, and generate less heat. Additionally, LEDs can be integrated with smart lighting systems that adjust based on the time of day or occupancy, further reducing energy consumption. Motion Sensors and Timers : Installing motion sensors and timers can ensure that lights are only on when needed. For example, lights can automatically dim or turn off when no personnel are present in the cleanroom, which significantly reduces energy consumption without affecting operations. Daylight Harvesting : If the cleanroom has access to natural light, consider using daylight harvesting systems that adjust artificial lighting levels based on available natural light. This can reduce the amount of electricity needed to illuminate the space during daylight hours. 4. Energy-Efficient Equipment Other energy-consuming equipment, such as sterilizers, autoclaves, and other machinery, also contributes to the overall energy usage of a cleanroom. To improve energy efficiency in equipment: Upgrading Equipment : Older equipment may not be optimized for energy use. Upgrading to newer, energy-efficient models can result in significant energy savings. For instance, modern sterilizers are designed to use less water, energy, and time compared to older models. Scheduling Equipment Use : In some cases, the timing of equipment use can affect energy consumption. For example, scheduling equipment like autoclaves to run during off-peak hours or during low-energy-demand periods helps reduce the overall energy load on the system. 5. Design Considerations for Cleanroom Energy Efficiency The design phase offers many opportunities to incorporate energy efficiency into cleanroom operations. These strategies include: Room Layout : Properly designing the cleanroom layout can optimize airflow and minimize the need for excessive HVAC energy. The placement of equipment, personnel areas, and materials should be considered to ensure efficient air distribution, minimize contamination, and reduce energy use. Building Envelope : The cleanroom's exterior walls, windows, and roof should be well insulated to prevent heat loss in cold climates and heat gain in hot climates. Proper insulation reduces the heating and cooling demands of the HVAC system. Energy-Efficient Materials : The use of energy-efficient materials in the construction and design of cleanrooms, such as energy-efficient doors, windows, and walls, can help optimize energy use and prevent unnecessary energy loss. Conclusion Energy efficiency in cleanrooms is critical for reducing operational costs, improving environmental sustainability, and ensuring long-term operational performance. By implementing strategies such as optimizing HVAC systems, improving filtration efficiency, utilizing energy-efficient lighting, and upgrading equipment, cleanroom operators can significantly reduce their energy consumption while maintaining the cleanliness and functionality required for sensitive manufacturing processes. Cleanroom design, including room layout and material selection, also plays an important role in achieving energy efficiency. Ultimately, by adopting these energy-efficient strategies, cleanroom operators can not only lower costs but also contribute to broader sustainability goals and comply with increasingly stringent regulatory requirements. Read more: All About Cleanrooms - The ultimate Guide
By Kjeld Lund 17-Jul-2025 July 28, 2025
Step-by-step: How to perform an integrity test on a cleanroom HVAC system This is the second article that the UK based Cleanroom Technology has asked me to write for them. Read it here
Show More